Applications of Proof Theory to Isabelle

نویسنده

  • Lawrence C Paulson
چکیده

Isabelle [3, 4] is a generic theorem prover. It suppports interactive proof in several formal systems, including first-order logic (intuitionistic and classical), higher-order logic, Martin-Löf type theory, and Zermelo-Fraenkel set theory. New logics can be introduced by specifying their syntax and rules of inference. Both natural deduction and sequent calculi are allowed. Isabelle’s approach is to represent the various formal systems, or object-logics, within a single meta-logic. The meta-logic is a fragment of higher-order logic, formulated in natural deduction. The proof theory of meta-logic is the main tool for proving that an object-logic is correctly formalized in Isabelle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miscellaneous Isabelle/Isar examples for Higher-Order Logic

Isar offers a high-level proof (and theory) language for Isabelle. We give various examples of Isabelle/Isar proof developments, ranging from simple demonstrations of certain language features to a bit more advanced applications. The “real” applications of Isabelle/Isar are found elsewhere.

متن کامل

The Isabelle Framework

Isabelle, which is available from http://isabelle.in.tum.de, is a generic framework for interactive theorem proving. The Isabelle/Pure meta-logic allows the formalization of the syntax and inference rules of a broad range of object-logics following the general idea of natural deduction [32, 33]. The logical core is implemented according to the well-known “LCF approach” of secure inferences as a...

متن کامل

Shared-Memory Multiprocessing for Interactive Theorem Proving

We address the multicore problem for interactive theorem proving, notably for Isabelle. The stagnation of CPU clock frequency since 2005 means that hardware manufactures multiply cores to keep up with “Moore’s Law”, but this imposes the burden of explicit parallelism to application developers. To cope with this trend, Isabelle has started to support parallel theory and proof processing in 2007,...

متن کامل

Experiments with ZF Set Theory in HOL and Isabelle

Most general purpose proof assistants support versions of typed higher order logic. Experience has shown that these logics are capable of representing most of the mathematical models needed in Computer Science. However, perhaps there exist applications where ZF-style set theory is more natural, or even necessary. Examples may include Scott’s classical inverse-limit construction of a model of th...

متن کامل

Proof Pearl: Defining Functions over Finite Sets

Structural recursion over sets is meaningful only if the result is independent of the order in which the set’s elements are enumerated. This paper outlines a theory of function definition for finite sets, based on the fold functionals often used with lists. The fold functional is introduced as a relation, which is then shown to denote a function under certain conditions. Applications include su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996